关于大直径桩(d800mm)极限侧阻力和极限端阻力的尺寸效应
(1) 大直径桩端阻力的尺寸效应。主要原因是桩成孔卸载造成的孔底土回弹,造成端阻力的降低,类似于深基坑的回弹。大直径桩静载试验曲线均呈缓变型,反映出其端 阻力以压剪变形为主导的渐进破坏。G.G.Meyerhof(1998)指出,砂土中大直径桩的极限端阻随桩径增大而呈双曲线减小。
(2)大直径桩侧阻尺寸效应系数,桩成孔后产生应力释放,孔壁出现松弛变形,导致侧阻力有所降低,侧阻力随桩径增呈双曲线型减小 。
岩溶地区的桩基设计原则(规范3.4.4条)一不宜采用管桩的原因如下
1)管桩一旦穿过风化岩层覆盖就立即接触岩层,管桩很容易就破坏,破坏率达30%~50%;
2)桩尖接触岩面后,很容易沿倾斜的岩面滑移,造成桩身倾斜,导致桩身断裂或倾斜率过大;
3)桩长难以把握,配桩困难;
4)桩尖落在基岩上,周围土体嵌固力小,桩身稳定性差。
灌注桩后注浆
1)灌注桩成桩后一定时间,通过预设于桩身内的注浆导管及与之相连的桩端、桩侧注浆阀注入水泥浆,使桩端、桩侧土体(包括沉渣和泥皮)得到加固,从而提高单桩承载力,减小沉降。承载力一般可提高40%~100%(但湖北省标DB42/242-2003规定不宜超过同类非压浆桩的1.3倍),沉降可减少20%~30%,可使用与除沉管灌注桩外的各种钻、挖、冲孔桩。
2)增强机理:a、后注浆对桩侧及桩端土的加固作用,表现为:固化效应 -桩底沉渣及桩侧泥皮因浆液渗入而发生物理化学作用而固化,充填胶结效应-对桩底沉渣及桩侧泥皮因渗入注浆而显示的充填胶结,加筋效应-因劈裂注浆现成网状结石。
3) 增强特点:端阻的增幅高于侧阻,粗粒土的增幅高于细粒土。桩端、桩侧复式注浆高于桩端、桩侧单一注浆。这是由于端阻受沉渣影响敏感,经后注浆后沉渣得到加 固且桩端有扩底效应,桩端沉渣和土的加固效应强于桩侧泥皮的加固效应;粗粒土是渗透注浆,细粒土是劈裂注浆,前者的加固效应强于后者。
4)注浆后变形特点:非注浆的Q-s曲线为陡降型,而后注浆为缓变型,使得在相同安全系数下桩的可靠度提高,沉降减少。沉降减少的主要原因如下:a、固化了桩底沉渣及虚土,同时桩端有扩底效应 b、由于注浆压力较大(一般均大于1Mpa),对桩端土进行了预压。
5)设计以注意的事项:a、注浆管的连接应采用套管连接 b、当注浆管代替钢筋时,最好在桩顶处预埋附加钢筋,避免由于施工保护不当导致注浆管在桩顶处折断 c、注浆管的固定应采用绑扎固定。
另:对岩溶发育地区高层建筑桩基勘察、设计要求和施工的思考见附件。
单桩承载力的时间效应
所谓的单桩承载力的时间效应是指桩的承载力随时间变化,一般出现在挤土桩中,特别是预制桩。上海的资料显示,随着打桩后间歇时间的增加承载力都有不同程度的增加,间歇一年后的但桩承载力可提高30%~60%。
分析原因如下:
桩 打入时,土不易被立即挤实(特别是软土中),在强大的挤压力作用下,使贴近桩身的土体中产生了很大的空隙水压力,土的结构也造成了破坏,抗剪强度降低(触 变)。经过一段时间的间歇后,孔隙水压力逐渐消散,土逐渐固结密实,同时土的结构强度也逐渐恢复,抗剪强度逐渐提高。因而摩擦力及桩端阻力也不断增加。
强度提高最快发生在1~3个月时。某种程度上可由高孔隙水压和排挤开的体积的影响,使紧靠桩的土产生迅速的排水固结来解释。实际上紧靠桩的土(大约50~200mm的范围内)往往固结的很厉害,以至使桩的有效直径增加。
桩的承载力随时间的增长的现象在软土中比较明显。但在硬塑土中的变化规律有待进一步研究。
不是所有的桩的承载力都随时间增加,一些桩的承载力随时间降低。
桩筏基础反力呈马鞍型分布的解释
根据传统的荷载分布原则,荷载的分布是根据刚度进行分配 ,基础中间部位桩的承载力低说明土对桩的支撑刚度降低,也就是桩侧桩端土的刚度降低。
原 因是中间部位的桩间土要承受四周桩传来的荷载。换一种解释方法是,中间有限的桩间土不能同时给周围的桩提供所要求的承载力,而靠近外侧的桩除依靠基础内侧 的土提供承载力外,还能利用靠近基础外侧的土提供承载力,而靠近基础外侧的土受内部桩的影响小,能比内部的土提供更多的承载力,因此外侧的桩能承受较内部 桩更多的荷载,也就是桩反力呈马鞍型分布的原因。
另基坑开挖对桩间土的卸载造成桩间土的回弹,导致靠近基坑边缘处桩刚度大,中部桩刚度小,更加加剧了基础反力呈马鞍型分布。
变刚调平设计原则总体思路
根据上部结构布局、荷载和地质特征,考虑相互作用效应,采取增强与弱化结合,减沉增沉结合,整体平整,实现差异沉降最小化,基础内力最小化和资源消耗最小化。
1. 根据建筑物体型、结构、荷载和地质条件,选择桩基、复合桩基、刚性桩复合地基,合理布局,调整桩土支承刚度,使之与荷载相匹配。
2. 为减小各区位应力场的相互重叠堆核心区有效刚度的削弱,桩土支承体布局宜做到竖向错位或水平向拉开距离。
3. 考虑桩土的相互作用效应,支承刚度的调整宜采用强化指数进行控制。核心区强化指数宜为1.05~1.30,外框区弱化指数宜为0.95~0.85。
4. 对于主裙连体建筑,应按增强主体,弱化裙房的原则进行设计。
5. 桩基的桩选型和桩端持力层的确定,应有利于应用后注浆技术,应确保单桩承载力有较大的调整空间。基桩宜集中布置于柱墙下,以降低承台内力,最大限度发挥承台底地基土分担荷载的作用,减小柱下桩基与核心筒桩基的相互作用。
6. 宜在概念设计的基础上进行上部结构-基础-桩土的共同作用分析,优化细部设计,差异沉降宜严于规范值,以提高耐久性可靠度。
桩基变刚度设计细则
1. 框筒结构
核心筒和外框柱的基桩宜按集团式布置于核心筒和柱下,以减小承台内力和减小各部分相邻影响。
以桩筏总承载力特征值与总荷载效应标准组合值平衡为前提,强化核心区,弱化外框区。核心区强化指数,对于核心区与外框区桩端平面竖向错位或外框区柱下桩数不超过5根时,宜取1.05~1.15,外框为一排柱时取低值,二排柱时取高值;对于桩端平面处在同一标高且柱下桩数超过5根时,核心区强化指数宜取1.2~1.3,一排柱时取低值,二排柱时取高值。外框区弱化指数根据核心区强化指数越高,外框区弱化指数越低的关系确定;或按总承载力特征值与总荷载标准值平衡,单独控制核心区强化指数,使外框区弱化指数相应降低。
框剪,框支剪力墙,筒中筒结构形式,参框筒结构确定。
2. 剪力墙结构
剪力墙结构整体性好,墙下荷载分布较均匀,对于电梯井和楼梯间等荷载集度高处宜强化布桩。基桩宜布置于墙下,对于墙体交叉、转角处应予以布桩,当单桩承载力较小,按满堂布桩时,应强化内部,弱化外围。
3. 桩基承台设计
对变刚调皮设计的承台,应按计算结果确定截面和配筋,其最小板厚和梁高,对于柱下梁板式承台,梁的高跨比和平板式承台板的厚跨比,宜取1/8;梁板式筏式承台的板厚和最大双向板区格短边净跨之比不宜小于1/16,且厚度不小于400mm;对于墙下平板式承台厚跨比不宜小于1/20,且厚度不小于400mm;筏板最小配筋率应符合规范要求。
筏式承台的选型,对于框筒结构,核心筒和柱下集团式布桩时,核心筒宜采用平板,外框区宜采用梁板式,对于剪力墙结构,宜采用平板。承台配筋可按局部弯矩计算确定。
4. 共同作用分析与沉降计算
对于框筒结构宜进行共同作用计算分析,据此确定沉降分布、桩土反力分布和承台内力。
当不进行共同作用分析时,应按规范计算沉降,据此检验差异沉降等指标
桩基础受力的基本规律
随着竖向荷载的加大,侧阻的发挥先于端阻。随着变形的增加,端阻力得以发挥。一般桩土相对位移到达4-10mm左右(根据土种类而定),侧阻力即可以充分发挥,而端阻力的充分发挥需要桩土相对位移达到d/12~d/4(小直径桩),d为桩径,黏性土为d/4,砂性土为d/12~d/10。
桩基沉降的特征
1)时间性。土体中桩基础的沉降要经历一个很长的时间。在上海地区,一般竣工后5~7年的沉降速度才会降到每年4mm以下。软土中桩基础沉降的主要部分是与时间因数有关的,按目前土力学的认识,沉降主要部分有固结变形和土体的流变组成;
2)刺入变形。产生刺入变形的解释入下: 在 群桩桩顶逐渐加载过程时,单桩顶荷载较小时,首先使桩的上部桩身产生压缩,桩的上部质点向下位移于土体之间产生了相对位移,土体要阻止桩的上部的位移就产 生了摩阻力。桩顶荷载通过摩阻力逐渐扩散到土体中去。不仅扩散到桩于桩之间的土体中,也扩散到桩尖以下的土体中。在这一阶段,桩侧阻力的分布可能是桩的上 端大,下端小,逐步向下发展。土体中的应力主要由于桩上部的摩阻力传给上部的土体,因此桩间土体的应力也大于桩尖以下土体的应力。 再继续加载,桩侧上部滑移区域不断向下扩大。桩尖承载力开始发挥作用,桩尖以下土体中的应力增加的幅度会大于桩间土体中的应力的增加。(一般认当但相对位移达到2~5mm时,桩侧摩阻力达到极限,桩土之间将产生相对滑移) 加 载完成以后,桩间土及桩尖土在应力场的作用下由于固结和流变会继续变形。其中桩间土体的固结压缩和流变更为重要,由于桩身的变形基本上是材料的弹性压缩, 因此在这段时间内,桩间土体质点向下的位移要大于同一截面深度处桩质点的位移,即在桩的上部,桩身质点向下位移与相邻土质点之间的位移差会减小,甚至会改 变方向。由于位移差产生的摩阻力也将随之减小,甚至产生负摩阻力。为了使减少了的桩周土体反力与桩顶荷载平衡,必须产生一个新的沉降增量,增加桩土相对位 移来增加土反力。在这一工程中就会发生新的滑移(刺入变形)。总的趋势是使桩上部的摩阻力逐渐减少,桩下部的摩阻力和桩端支撑力逐渐增加。当桩的数量较 多,桩的布置比较密集,桩间土体中应力较大时,桩上部可能出现负摩阻力,承台下的土体会与承台底面脱开。
3)土体中摩擦桩基础的沉降实际上由 桩身压缩、桩尖的刺入变形及桩尖下土体的压缩变形(固结和流变)。
桩土共同工作
桩土共同工作是一个典型的非线性过程。桩土共同工作的实验表明:
1)桩土共同作用的加载过程中,桩土是先后发挥作用的,是一个非线性的过程。桩总是先起支撑作用,桩的承载力达到100%以后,既达到极限以后土体才能起支承作用。桩土分担比是随加载过程而变化,没有固定的分担比。
2)桩顶荷载小于单桩极限荷载时,每级增加的荷载主要由桩承受,桩承担90~95%左右。
3)桩上荷载达到单桩屈服荷载后,承台底的地基土承受的荷载才明显的增加,桩的分担比显著减小,沉降速度也有所增加。
4)桩土共同作用的极限承载力单桩承载力+地基土的极限承载力。