一、概念
1、热路:由热源出发,向外传播热量的路径。在每个路径上,必定经过一些不同的介质,热路中任何两点之间的温度差,都等于器件的功率乘以这两点之间的热阻,就像电路中的欧姆定律,与电路等效关系如下。
2、热阻:在热路中,各种介质及接触状态,对热量的传递表现出的不同阻碍作用在热路中产生温度差,形成对热路中两点间指标性的评价。
符号Rth单位℃/W。
稳态热传递的热阻计算: Rth= (T1-T2)/P
T1热源温度(无其他热源)(℃)
T2导热系统端点温度 (℃)
热路中材料热阻的计算: Rth=L/(KS)
L材料厚度 (m)
S传热接触面积 (m2)
3、导热率:是指当温度垂直向下梯度为1℃/m时,单位时间内通过单位水平截面积所传递的热量。
符号K or单位 W/m-K,
二、热设计的目标
1、 确保任何元器件不超过其最大工作结温(Tjmax)
推荐:器件选型时应达到如下标准民用等级:Tjmax150℃工业等级:Tjmax135℃
军品等级:Tjmax125℃航天等级:Tjmax105℃
以电路设计提供的,来自于器件手册的参数为设计目标
2、 温升限值
器件、内部环境、外壳:△T60℃
器件每升高2℃,可靠性下降10%;器件温升为50℃时,寿命只有温升25℃的1/6,电解电容温升超过10℃,寿命下降1/2。
三、计算
1、 TO220封装+散热器
结温计算
热路分析
热传递通道:管芯j功率外壳c散热器s环境空气a
注:因Rthca较大,忽略不影响计算,故可省略。
RthjaRthjc+Rthcs+Rthsa(T结温-T环温)/P
条件
Rthjc器件手册查询
Rthcs材料热阻:Rth绝缘垫=L绝缘垫厚度/(K绝缘垫S绝缘垫接触c的面积)
Rthsa散热器热阻曲线图查询
T结温器件手册查询(待计算数值)
T环温任务指标中的工作环境要求
P 电路设计计算
计算
T结温=(Rthjc+Rthcs+Rthsa)P+T环温<手册推荐结温
注:注意单位统一;判定结温温升限值是否符合。
散热器热阻计算(参见上图)
散热器的热阻一般可在由厂家提供的热阻曲线上标出,也可通过测试得出。
测试
在被测散热器上安装一发热器(or组)件,固定一个风速(M/S),测量进、出风温度,通过计算,得出该条件下的Rthsa。设定一组风速,得出的不同Rthsa值,绘制出该散热器的热阻曲线,不同长度的散热器,可得到不同的曲线。
条件
T进风进口温度
T出风相同风速下的出口温度
P电路设计计算的,发热器(or组)件的功耗
计算Rthsa=(T出风-T进风)/P
注:亦可根据已有条件,如管芯的△T和功耗,计算出所需散热器的热阻上限,在热阻曲线图上选用足够尺寸的散热器。
2、共用同一散热器(见下图)
分析
对于散热器而言,总的传热功耗为:
P总=Pj1+Pj2
那么散热器的温升为:
△T散热器=Rthsa(Pj1+Pj2)
每只管子的传热路径中,热阻引起的温升为
△Tj1=(Rthjc1+Rthcs1)Pj1△Tj2=(Rthjc2+Rthcs2)Pj2
热路中,所有温升之和加上环境温度就是最大结温,即
Tjmax1=△Tj1+△T散热器+T环境
Tjmax2=△Tj2+△T散热器+T环境
条件
Pj1电路设计计算
Pj2电路设计计算
Rthjc1器件手册查询
Rthjc2器件手册查询
Rthcs1材料热阻:Rth绝缘垫=L绝缘垫厚度/(K绝缘垫S绝缘垫接触c的面积)
Rthcs2材料热阻:Rth绝缘垫=L绝缘垫厚度/(K绝缘垫S绝缘垫接触c的面积)
Rthsa散热器热阻曲线图查询
T环境任务指标中的工作环境要求
计算
J1的最大结温:Tjmax1=(Rthjc1+Rthcs1)Pj1+Rthsa(Pj1+Pj2)+T环境
J2的最大结温:Tjmax2=(Rthjc2+Rthcs2)Pj2+Rthsa(Pj1+Pj2)+T环境
注: 判定计算出的最大结温,是否小于手册推荐结温;判定结温温升限值是否符合;注意计算时单位要统一。
经验
1、热路的分析和计算,由于影响因素较为复杂,可以忽略一些影响小的参数,来简化计算,但一定要注意影响趋势的方向,是有利于传热的,可以作为设计余量储备,由于影响小,所以不会影响经济性。
2、还是因为影响因素复杂,理论计算是设计指导,结果一定以试验结论判定,埋点测温是最有效的验证方式。
3、电源的热设计是和电路设计密不可分的,实际情况往往因为空间问题,把散热设计到最大化,也就刚刚满足需求,郭鹏学暖通而热路的设计只能截止到外壳,外壳(或散热器)的温度怎么办?这就需要电路设计来降低功耗,甚至和客户讨论如何给电源散热,这就需要我们是否能提的出所有计算数据。
4、关于余量问题,建议只要满足结温和温升限制,即可保证产品工作的可靠性。
5、热设计的装配工艺应符合相应的工艺规范,首先确保装配的难度不大,其次考虑装配的步骤减少,即适应批量的流水装配作业。